

Why Isn't My Program Working?

Exploring Microbial Resistance at the Wet End

Linda Robertson
International Microbial Associates

www.iMicrobial.com

RETHINK PAPER: Lean and Green

Wet end contamination

- Machine covered in stringers
- Bacteria and fungi forming biofilms/deposits
- Slime can drop and cause sheet defects

Antimicrobial Biocides

- Used to reduce microbial growth on machines
- Activity depends on:
 - System chemistry
 - Types of microbes present

Antimicrobial Biocides

- Used to reduce microbial growth on machines
- Activity depends on:
 - System chemistry
 - Types of microbes present

What is resistance?

"Resistance is a description of the relative insusceptibility of a microorganism to a particular treatment under a particular set of conditions."

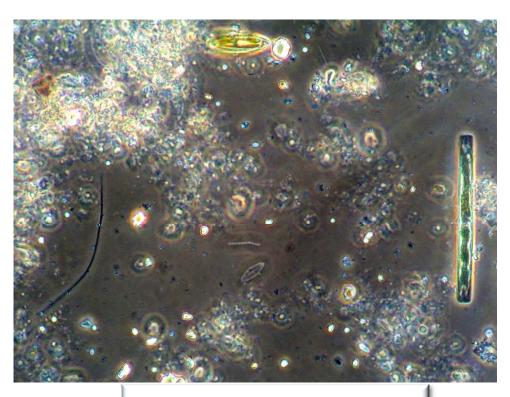
From: Gilbert and McBain. *Potential Impact of Increased Use of Biocides in Consumer Products on Prevalence of Antibiotic Resistance*. Clinical Microbiology Reviews, 16(2)189-298. 2003

Tolerance (change in population) MIC >10X Resistance (genetic change) MIC 20-50X

From: Jana Rajan. *Development of Microbial Resistance to Biocides.*Myth or Reality? Dow Chemical Webinar June 2010

Real World

- Wrong biocide for the population or application point
- Biocide incompatible with chemistry
 - ORP
 - pH
- Water system closure increases
- Biocide simply doesn't "work"
- Biocide works initially; stops "working"
 - Counts increase at constant biocide dose
 - Slime, defects and downtime increase


Inappropriate biocide for the population or application point

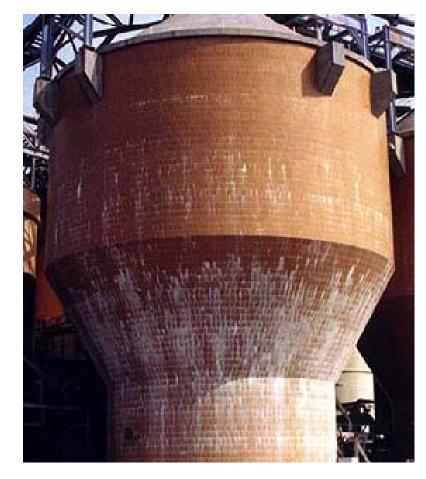
Fresh water

- Speed of kill
- pH
- Turbidity
- Sheathed & filamentous bacteria

Machine

Fungi/Bacteria

Filtered freshwater gauze sample



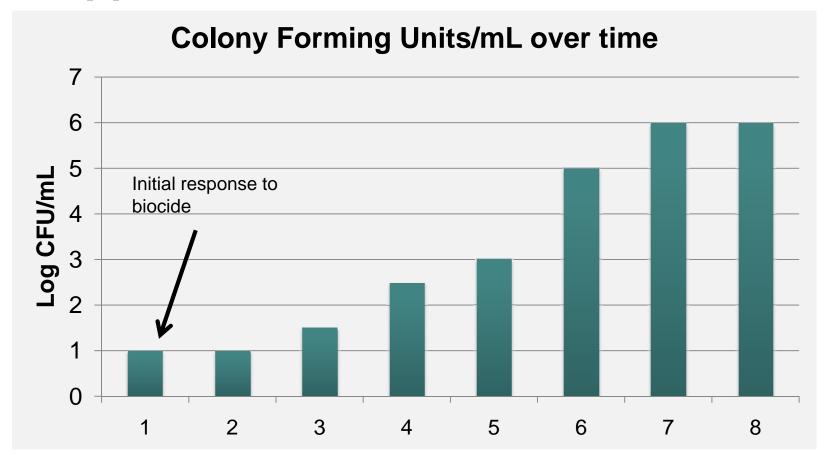
Biocide incompatible with

chemistry

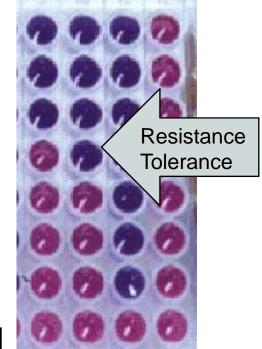
ORP
Spoilage
Sulfites
Oxidants
pH

Biocide doesn't "work"

- Lack of adequate screening studies to determine activity prior to start of trial
- Picked 'wrong' biocide


Blue inhibited

Pink reduced/micro activity


Pattern found with resistance Biocide slug feed response Application rate constant

Biocide stops "working"

- Minimal inhibitory concentration was initially at 16 ppm
- After 6 months it takes 125 ppm to show inhibition

Blue inhibited Pink reduced/micro activity

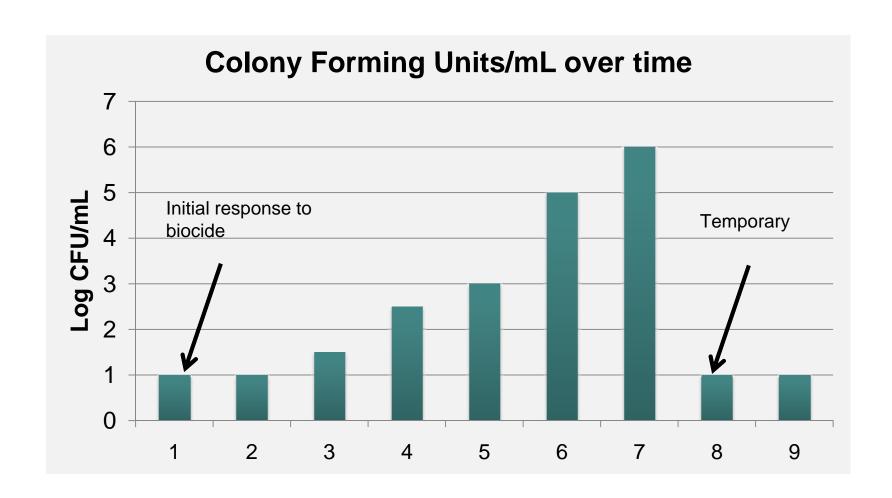
Biocide Examples

- Cross resistance:
 - Isothiazolin
 - Glutaraldehyde
- Concentration
 - DBNPA/Glutaraldehyde
 - Limited activity against fungi
- Oxidants
 - Activity differs between oxidants
 - Chemistry strongly affects activity
 - Resistance example: Deinococcus

Modes of action:

Oxidation of thiol groups Disruption of:

- Cell membranes
- Respiratory enzymes
 Enzyme inactivation
 Metal ion chelation



Minimizing tolerance issues

- Program approach
 - Multiple biocides
 - Different modes of action
- Appropriate biocide for pH/system chemistry/microbes
 - Adequate screening studies conducted
- Use of alternate biocide for a set period of time

Biocide slug feed response Use of temporary biocide

Goal

Minimizing biocide use
Maximizing machine cleanliness
Avoiding downtime

